Científicos del Fermilab, ponen a prueba la Teoría del universo holográfico.

Captura de pantalla 2014-08-26 a la(s) 23.58.34

¿Es nuestra realidad sólo una ilusión holográfica? Para algunos puede que la simple pregunta les parezca algo descabellada pero no para los científicos del Laboratorio Nacional Fermi o Fermilab, un laboratorio de física de altas energías que cuenta con el segundo acelerador de partículas más potente del mundo, el Tevatron, ya que actualmente está realizando un experimento único que pretende poner a prueba el principio holográfico.

Vista aérea del Fermilab.  El primer anillo es el Inyector Principal, el segundo es el Tevatrón.

Vista aérea del Fermilab. El primer anillo es el Inyector Principal, el segundo de más de 6 kilómetros de circunferencia,  es el Tevatrón.

Como personajes de un programa de televisión que no saben que su aparente mundo tridimensional sólo existe en una pantalla bidimensional, nosotros podríamos estar ignorando que nuestro espacio tridimensional es sólo una ilusión. La información de todo lo que existe en el universo podría en realidad estar codificada en pequeños paquetitos bidimensionales.

Si se acercan lo suficiente a la pantalla del televisor verán píxeles, pequeños puntos de información que si nos alejamos forman una imagen continua. Los científicos piensan que la información en el Universo podría estar almacenada de igual forma, y que el tamaño de cada pixel que forma el espacio, sería 10 billones de billones de veces más pequeño que un átomo.

Según lo explica Craig Hogan, director del Centro de Astrofísica de Partículas del Fermilab, y desarrollador de la Teoría del Ruido Holográfico, lo que se está buscando es saber si el espacio-tiempo es un sistema cuántico como lo es la materia. Y de llegar a confirmarse, esto cambiaría completamente la forma en cómo veníamos percibiendo el Universo durante miles de años.

La teoría cuántica sugiere que es imposible saber al mismo tiempo la locación exacta y la velocidad de las partículas subatómicas. Si el espacio está formado por una especie de bits bidimensionales, con una información limitada sobre la ubicación exacta de los objetos, entonces el espacio mismo, podría estar incluido dentro de esta teórica de la incertidumbre.  De igual forma que la materia continúa vibrando (en forma de ondas cuánticas), aún cuando está congelada a cero absoluto, este espacio digitalizado debería producir vibraciones aún en su estado más bajo de energía.

Esencialmente lo que el experimento pretende es probar la habilidad del universo de almacenar información. Si hay un grupo de bits que te dice dónde está algo, eventualmente resultará imposible encontrar más información específica sobre la localización, al menos en principio. El instrumento que se está utilizando para encontrar estos límites es el Interferómetro Holográfico, o también conocido como el Holómetro del Fermilab, el instrumento más sensible que se ha creado para medir la vibración del espacio mismo.

Ahora que está operando a su máxima capacidad, el Holómetro usa un par de interferómetros colocados uno cerca del otro. Cada uno envía un rayo de láser de un kilowatt (equivalente a 200 000 punteros láser) hacia un bifurcador de rayos y luego hacia dos brazos perpendiculares de 40 metros. La luz es entonces reflejada nuevamente hacia el bifurcador láser donde los dos rayos se recombinan, creando fluctuaciones y destellos en caso de haber movimiento. Los investigadores analizan estas fluctuaciones en la luz de retorno para ver si el rayo bifurcador se mueve en alguna dirección, siendo llevado por la vibración del espacio mismo.

Un científico del Fermilab trabaja con los rayos láser en el corazón del  Holómetro; el cual usará dos interferómetros láser idénticos para probar si el Universo es un holograma bidimensional.

Un científico del Fermilab trabaja con los rayos láser en el corazón del Holómetro; el cual usará dos interferómetros láser idénticos para probar si el Universo es un holograma bidimensional.

El ruido holográfico, se espera que este presente en todas las frecuencias, pero los científicos deben estar alertas para no ser engañados por otras fluctuaciones creadas por otras fuentes. El Holómetro está analizando una frecuencia tan alta (millones de ciclos por segundo) que los movimientos normales de la materia no deberían causar problemas. Sin embargo el ruido de fondo dominante se debe a menudo a las ondas de radio emitidas por los aparatos eléctricos cercanos. Sin embargo este experimento está diseñado para identificar y eliminar este ruido proveniente de fuentes convencionales.

Como apunta el físico del Fermilab, Aaron Chou, director del proyecto del Holómetro, “si se encuentra ruido que no se puede eliminar, significaría que se podría haber detectado algo fundamental acerca de la naturaleza, el ruido intrínseco del espacio-tiempo, lo cual sería un momento muy emocionante para la física. Un resultado positivo abrirá toda una nueva serie de cuestionamientos acerca de cómo el funciona el espacio.”

Se espera que este experimento comience a dar los primeros datos el próximo año.

En este experimento trabajan 21 científicos y estudiantes del Fermilab, del Instituto Tecnológico de Massachusetts, la Universidad de Chicago, y la Universidad de Michigan.

Anuncios

¿Vivimos dentro de un holograma? El principio holográfico y la teoría de cuerdas.

SEGUNDA PARTE.

hologram

La paradoja entre entropía y agujeros negros

Teniendo en cuenta estas propiedades de la entropía, resulta muy extraño lo que sucede en el interior de un agujero negro, ¿cómo es posible que todo lo que cae en él termine reduciéndose a simplemente masa, carga eléctrica y velocidad de rotación? Es como si la materia desapareciera en su interior y como esto simplemente no puede ser, los físicos han pensado que a lo mejor la información quedaba almacenaba su  horizonte y que por tanto estamos ante un holograma, en donde la cantidad de información que puede ser almacenada no depende del volumen  (3 dimensiones: longitud, amplitud y profundidad), sino del área ( 2 dimensiones: longitud y amplitud).  Esta idea la propuso el físico mexicano Jacob D. Bekenstein, al notar la similitud entre lo que sucede en horizonte de sucesos de un agujero negro y la entropía.

 Agujero Negro

El principio holográfico y la radiación de Hawking

Uno de los principales aportes a la ciencia y en consecuencia la humanidad, que ha hecho el físico británico Steven Hawking es la predicción teórica de que los agujeros negros emiten radiación.

Ahora sabemos que el espacio vacío en realidad está impregnado de energía que no siempre es constante, a ese fenómeno se le conoce como fluctuaciones cuánticas del vacío, estas fluctuaciones de energía dan lugar a la creación por brevísimos instantes a pares de partículas virtuales, (partículas y antipartículas).

Una partícula virtual es aquella que existe por un periodo de tiempo tan corto que infringe la ley de conservación, es decir aparece y desaparece de la nada. Una antipartícula es básicamente una partícula gemela, por cada partícula fundamental existe otra  con igual masa, mismo espín pero diferente carga eléctrica, por ejemplo, la antipartícula del electrón es el positrón, que viene a ser una especie de electrón pero con carga positiva.

Dentro de la intensa concentración de gravedad (energía) en un agujero negro, esos pares de partículas pasan de ser virtuales a ser reales, (su existencia se prolonga un poco más en el tiempo).  Cuando  estos pares de partículas se forman dentro del horizonte de sucesos, sucede que la partícula entra en contacto con su anti-partícula y ambas terminan destruyéndose,  devolviendo al agujero negro la energía usada para su creación.  Pero existe la posibilidad de que justo en el límite del horizonte de sucesos se formen esos pares de partículas, quedando una dentro y la otra fuera de la influencia gravitatoria del agujero negro, por lo que uno de los componentes del par podría escapar y parte de la energía del agujero negro escaparía con ella, lo que tiene como consecuencia la emisión neta de radiación por parte del agujero negro y por consiguiente una reducción de su  masa.  A este curioso fenómeno se le conoce como radiación de Hawking.  Si esto sucede continuamente tenemos que a través de miles de millones de años el agujero negro terminaría por evaporarse.

Este descubrimiento trajo consigo una interesante conclusión, si los agujeros negros emiten radiación (energía),  tienen temperatura y por lo tanto tienen entropía.  De hecho son considerados como los sistemas de máxima entropía.

Así combinando la idea de Bekenstein con el fenómeno de la radiación de Hawking, tenemos que es posible calcular la entropía de un agujero negro la cual es equivalente al área de su horizonte de sucesos.  Aunque un agujero negro gobierna una región tridimensional del espacio, la información que contiene depende del área de su horizonte de sucesos, no de su volumen.

Pues bien, sabiendo esto,  aparte de quedarnos  claro que los agujeros negros son objetos muy extraños, también tenemos los elementos básicos para comprender el fenómeno holográfico a los que dan lugar.

Sabemos que la información (energía), se puede manifestar físicamente, sea en forma de trozo de leña, enciclopedias, personas, etc.  Y puesto que la energía es equivalente a la masa (E=mc2),  al concentrar información en un área equivale a concentrar masa.  Si usted pudiera concentrar demasiada información/masa en un espacio diminuto, terminaría creando un agujero negro, ya  que existe un límite respecto al contenido de información que se puede almacenar en una región del espacio que no sea un agujero negro, (si se excede ese límite se formará un agujero negro).  A este límite se le conoce como frontera de Bekenstein.

En los sistemas que nos rodean la entropía aumenta con el volumen (3D), pero en los agujeros negros aumenta si aumenta su área (horizonte de sucesos bidimensional).  Esto nos recuerda mucho a un holograma.

Teoría del horizonte

Todos hemos visto un holograma, esos dibujos que parecen flotar dentro de unos cuadros plateados  en las tarjetas de crédito y en algunos billetes; y podríamos definirlos como estructuras de dos dimensiones que guardan información de la estructura tridimensional de un objeto.  Lo que genera la sensación de 3D es la luz que al reflejarse de determinada forma en ese objeto nos da ofrece la visión de una realidad diferente de la realidad.

Podemos concluir que un sistema de dos dimensiones y otro de tres son análogos respecto a la información que contienen; a esto se le conoce como principio holográfico.  Y eso es  precisamente lo que sucede en un agujero negro, la información de todo lo que contiene se graba en el espacio bidimensional de su horizonte de sucesos y al ser bañado con luz se expresa en tres dimensiones.

En 1995 el físico teórico Leonard Susskind redefinió la teoría de cuerdas al añadirle el principio holográfico como pilar central, y en 1997 un joven físico de 29 años, Juan Maldacena,  propuso la primera descripción del universo holográfico.

El universo que nos propone Maldacena es un universo muy particular que en nada se parece al que percibimos con nuestros sentidos, para él se trata de un holograma en donde todo lo que sucede puede ser descrito por una teoría física que sólo está definida en su horizonte.  A esto también se le conoce como teoría del horizonte (Boundary Theory).  Aquí el enigma de la gravedad cuántica estaría resuelto  por el simple hecho de que la gravedad no existe, pero puede ser percibida como parte de la ilusión holográfica.

El espaciotiempo curvo

Para entender el modelo de universo que propone Maldacena, repasemos un poco de geometría.  Recordemos que las curvas vienen en dos formas, negativas y positivas.  La forma más simple de curvatura positiva es la esfera; mientras que la forma más simple de curvatura negativa es la hipérbola, la cual se puede definir como un espacio con una curvatura negativa constante.

Hipérbola

Las figuras hiperbólicas han fascinado tanto a artistas como a científicos, el brillante diseñador gráfico holandés Maurits Cornelis Escher ha diseñado hermosas representaciones de espacios hiperbólicos.

Escher_Circle_Limit_III

Esta figura representa  un mapa plano de un espacio con curvatura negativa, en este tipo de representaciones la ruta más corta entre dos puntos no corresponde a una línea recta sino a una curva.  La forma en la que los peces se van haciendo más y más pequeños es sólo un artilugio para representar como el espacio curvo está comprimido para caber en la hoja de papel, pero en realidad son todos de igual tamaño.  Un ser que viviera en este mundo hiperbólico, no notaría ninguna distorsión en el tamaño de los peces, de hecho para llegar hasta el límite del círculo tendría que caminar por infinidad de copias de igual tamaño de estos peces. Para este ser hiperbólico, el horizonte del círculo estaría infinitamente lejos.

Sin embargo, una representación gráfica más real de este mundo hiperbólico sería imposible de dibujar debido a su forma extremadamente retorcida.  Pequeñas regiones de este plano tendrían formas como de silla de montar.

Captura de pantalla 2013-12-27 a la(s) 21.44.04

Para incluir el tiempo en una representación del espacio, los físicos pueden de igual forma considerar el espaciotiempo con una curvatura negativa o positiva.

La forma más simple de espaciotiempo con curvatura positiva es el espacio de Sitter (Sitter space).  Llamado así en honor al matemático, físico y astrónomo holandés Willen de Sitter.  Muchos cosmólogos creen que el universo en una etapa  temprana era muy similar al espacio de De Sitter y piensan que en un futuro muy lejano, volverá a ser así, debido a la aceleración cósmica.

De Sitter

La forma más simple de espaciotiempo con curvatura negativa es el espacio anti De Sitter (anti De Sitter space), similar a un espacio hiperbólico con la excepción de que también tiene una dirección de tiempo.  A diferencia de nuestro universo el cual se expande, el espacio anti De Sitter ni se expande  ni se contrae, a pesar de esta diferencia, el espacio anti De Sitter resulta muy útil a la hora de intentar elaborar teorías cuánticas de espaciotiempo y gravedad.

El espacio anti De Sitter.

Tal y como lo describe el propio profesor Maldacena en la revista Scientific American (noviembre de 2005), si nos imaginamos el espacio hiperbólico como un de los discos dibujados por  M.C. Escher, entonces el espacio anti De Sitter sería como una pila de estos discos formando un cilindro sólido, y el tiempo correría a lo largo del cilindro.

Cilindro

La física en este tipo de espacio tendría características muy particulares, se podría experimentar la gravedad, si se arrojara un objeto este regresaría, pero sorprendentemente,  el tiempo requerido para que el objeto regrese no dependerá lo fuerte que se haya arrojado.  La diferencia radica en que al arrojarse con mayor fuerza, recorrerá más distancia para regresar al punto de partida.  Si usted  envía un rayo de luz dentro de este particular espacio (viajando a la máxima velocidad posible), el rayo alcanzaría el infinito  y regresaría a usted en un periodo de tiempo finito; esto porque el objeto experimentaría una especie de contracción del tiempo cada vez más grande conforme se va alejando de usted.

 El holograma

El espacio anti De Sitter a pesar de ser infinito tiene un límite localizado más allá del infinito.  Para dibujar este horizonte los físicos y matemáticos usan una escala distorsionada de la distancia  similar a la usada en el disco de M.C. Escher, para contraer una distancia infinita en un espacio finito.

Según el profesor Maldacena, este horizonte es como el límite del cilindro en la figura anterior, tendría dos dimensiones, una de espacio (orbitando alrededor del cilindro) y otra de tiempo (que corre a lo largo).  En el espacio anti De Sitter de 4 dimensiones, el límite tendría 2 dimensiones espaciales y una dimensión temporal.  Justo como sucede con la representación del disco de M.C. Escher, el límite del espacio de anti De Sitter de 4 dimensiones tendría forma de esfera en cada momento.  En este límite es donde yace la teoría holográfica.

De forma simplificada esto significa que la teoría de la gravedad cuántica en el interior del espaciotiempo de anti De Sitter, resultaría equivalente a la teoría de la mecánica cuántica tradicional de las partículas que vivirían en el horizonte de este universo.  De comprobarse esta equivalencia, se podría usar la mecánica cuántica (que está relativamente comprendida) para definir a la gravedad cuántica (que no lo está).

El profesor Maldacena nos propone esta analogía, es como tener dos copias de una misma película, una en formato celuloide, y otra en un disco compacto.  La primera copia está en un formato lineal en una cinta de celuloide en donde cada marco corresponde a una escena de la película, y la segunda copia está en un disco bidimensional con anillos de puntos magnetizados que forman una secuencia de ceros y unos, y sin embargo ambos formatos describen a la misma película.

De forma análoga la teoría del horizonte de partículas se asemeja a la teoría de partículas en ausencia de gravedad.  De forma como en disco compacto, las imágenes sólo emergen cuando cada punto de información es procesado de cierta manera; en la teoría del horizonte de partículas, la gravedad cuántica y la dimensión extra aparecen cuando las ecuaciones son analizadas de la forma adecuada.

Al decir que ambas teorías son equivalentes, el profesor Maldacena quiere decir que por cada ente que existe en la teoría tradicional, existe otro equivalente en la teoría del horizonte.  Sin embargo ambos entes serían muy diferentes a su contraparte, por ejemplo un ente del interior de este universo, se podría ver como una única partícula; mientras que su contraparte del horizonte, correspondería a toda una colección de partículas, consideradas como una sola entidad.  Además si dos partículas tienen un 40% de posibilidades de colisionar en el interior, las dos colecciones de partículas correspondientes del horizonte, también tendrían el 40% de posibilidades de colisionar.

La teoría del horizonte y la teoría de cuerdas.

Gerard´t Hoof de la Universidad de Utecht, en 1974 predijo que los gluones, (bosones que mantienen unidos a los quarks dentro de los protones y neutrones), formaban cadenas que se comportaban de forma similar a las cuerdas descritas en la teoría de cuerdas.

La verdadera naturaleza de las cuerdas es aún desconocida, pero en 1981, Alexander M. Polyakov, profesor de la Universidad de Princeton, propuso que las cuerdas vivían en un espacio dimensional más alto que el de los gluones.  En las teorías holográficas, ese espacio dimensional más alto, está en el interior de espacio anti De Sitter.

Para comprender el origen de las dimensiones extra, el profesor Maldacena nos sugiere comenzar por considerar una de las cuerdas que da origen a un gluón en el horizonte de nuestro espacio imaginario.  Esta cuerda tiene espesor, el cual está relacionado con la cantidad de gluones que se encuentran esparcidos en su interior.  Las cuerdas de más finas se ubican cerca del horizonte, mientras que las cuerdas de mayor grosor se encuentran más alejadas.  Desde la perspectiva de un observador ubicado dentro del espaciotiempo, las cuerdas a pesar de tener diferente grosor, lucen como cuerdas finas en ubicadas en diferentes locaciones radiales.  El número de interacciones que se producen dentro del horizonte, determina el tamaño de su interior (el radio en el disco de Escher).

Cuerdas

Así esta correspondencia holográfica, conocida también como Conjetura anti De Sitter / Teoría de campos conformesAdS/CFT, por sus siglas en ingés;  no es sólo una alocada posibilidad para definir la gravedad cuántica, sino que también sirve para conectar la teoría de las cuerdas (que es el estudio más elaborado para entender la gravedad cuántica), con las teorías de quarks y gluones, que son los pilares en los que se basa la física de partículas.

¿En qué nos afecta todo esto?

Como ya nos advierte el propio Maldacena, su modelo no es más que eso, un modelo de universo, aún no podemos determinar si realmente vivimos en el interior de una proyección holográfica, los estudios realizados por Yoshifumi Hyakutake y colegas de la Universidad de Ibaraki en Japón,  a los que se hace referencia al principio de esta entrada y que dieron lugar a varios titulares donde se afirmaba que posiblemente nuestra realidad sea un holograma, lo que en realidad confirman es que:

  1. La descripción de los agujeros negros es esencialmente holográfica, que
  2. Corresponde a la Conjetura anti De Sitter/Teoría de campos conformes o AdS/CTF.

Pero de forma alguna significa que nuestro realidad sea un holograma, según concluye el profesor Maldacena, “la prueba numérica de que estos sistemas sean idénticos, nos da esperanza de que las propiedades gravitacionales de nuestro universo puedan algún día ser explicadas a través de un modelo más simple de cosmos, en términos puramente cuánticos”.

Todavía es mucho lo que desconocemos acerca de la realidad, por lo es temprano para dar por verdadera una teoría que trate de explicarla, pero a la vez resulta prepotente el descartar cualquier posibilidad basándonos únicamente en lo que ahora sabemos.  Lo único que podemos decir es que parece que la realidad es mucho más interesante, extraña y fascinante de lo que podemos imaginar.

 

Fuentes:

http://arxiv.org/pdf/1311.5607v1.pdf

http://arxiv.org/pdf/1311.7526v1.pdf

Más información:

Scientifi American Noviembre, 2005. “The illusion of gravity”. Maldacena, Juan.

http://plus.maths.org/content/illusory-universe

¿Es nuestro universo un holograma?

6a00d8341bf7f753ef014e89d692cc970d

PRIMERA PARTE.

Un estudio llevado a cabo por científicos japoneses publicado este mes en la revista Nature, verificaba mediante el uso de modelos de simulación computarizada la existencia de una especie de realidad holográfica, esto ha hecho que nos acordemos de la interesante propuesta contenida en una “remasterización” de la famosa teoría de las cuerdas propuesta en 1990 por Juan Martín Maldacena, físico y profesor en el Instituto de Estudios Avanzados de Princeton, en donde se desarrolla la idea de que el universo en el que habitamos, incluidos nosotros mismos, seamos sólo una ilusión, un holograma producto de una realidad en la que sólo existen dos dimensiones.

Esta propuesta no es fácil de asimilar y mucho menos de exponer en términos dialécticos, pero por más absurda que parezca vale la pena hacer el esfuerzo por conocerla porque tiene un fundamento matemático muy fuerte, (las matemáticas son las herramientas básicas con las que contamos a la hora de intentar describir cómo es que funciona el Universo, desde lo más diminuto hasta lo más grande); pero para comprender los aspectos más básicos en los que se basa esta teoría, es necesario tener presente algunos puntos.

 El gran misterio de la física

Mientras que la teoría general de la relatividad describe lo que sucede con los planetas, las galaxias, etc; la mecánica cuántica intenta explicar lo que sucede a nivel subatómico, el reino de las partículas fundamentales de las que está compuesta la materia.

Con ambas teorías se puede explicar casi todo lo que sucede a nuestro alrededor, pero hay un problema, ambas teorías son incompatibles, pareciera que se rigen por reglas diferentes; mientras que a nivel macro la gravedad es importantísima, a nivel cuántico, donde casi no hay masa, la gravedad resulta insignificante, lo que mantiene unidas a las partículas que forman los átomos no es la fuerza de gravedad, sino una especie de partículas que sirven de mensajeras o portadoras de las fuerzas fundamentales de la naturaleza, los bosones gauge, una partícula ejerce fuerza sobre la otra al enviar unos cuantos de estos bosones gauge.

En la naturaleza existen cuatro fuerzas  fundamentales cada una con su correspondiente bosón:

Captura de pantalla 2013-12-26 a la(s) 23.43.00

Experimentalmente ha sido posible la observación de las partículas portadoras de tres de estas fuerzas fundamentales, pero hasta la fecha no se ha podido comprobar la existencia del gravitón, y lo que es más confuso, todos los intentos por describir al gravitón en términos matemáticos acordes a la teoría de los campos, han arrojado resultados erróneos.

La teoría del campo cuántico, describe a las partículas como estados excitados de un campo físico subyacente, de forma muy simplificada, en física se denomina campo a una distribución espacial con una magnitud o energía diferente del resto del espacio en donde de encuentra, esto significa que el espacio vacío no está tan vacío sino que está impregnado por una especie de energía, y que las partículas son una cualidad asociada a un campo, ahí donde se concentra la mayor parte de energía, aparece la partícula relacionada a ese campo.  A esto también se le conoce como “cuantización”.    Por ejemplo: el fotón es el quantum del campo electromagnético.

Así, la tan buscada teoría del campo unificado capaz de unir las 4 fuerzas fundamentales en términos de un solo campo, continúa esquivando a los físicos; pero ellos no se dan por vencidos tan fácilmente y para resolver el problema han optado por darle otro enfoque,  es aquí donde entra  la Teoría de  Cuerdas.

En búsqueda de una teoría del todo.

Partiendo de la incompatibilidad entre la mecánica cuántica y a la teoría de la relatividad general, los físicos, incluyendo a Einstein, han intentado buscar una base matemática unificada, una teoría que pueda unir ambos mundos, se han formulado muchas, pero hasta el momento no se han obtenido resultados definitivos en ninguna de ellas.  Sin embargo existe una teoría matemática que ha captado la atención científica por su particular elegancia, la Teoría de Cuerdas (String Theory), que es en realidad una colección de varias teorías, y cuya idea principal consiste en describir a las partículas fundamentales como pequeñas cuerdas vibrantes.

Si dividimos una cosa, la que sea, hasta el punto donde no es posible dividirla más, nos encontraremos con una partícula fundamental, (aquella que ya no admite más divisiones), pero según el modelo estándar de la física existen ¡17 partículas fundamentales diferentes!, (18 si contamos al elusivo gravitón).

Modelo estándar de partículas.

Modelo estándar de partículas.

 Todo lo que existe está compuesto por estas partículas, no todas están en todos los elementos pero todas están presentes en todo cuanto existe en el universo. ¿Parecen muchas verdad? Lo lógico sería  que existiera sólo una partícula fundamental común, pero dado que no es así, los físicos han propuesto que lo que se encuentra en lo más profundo de cada partícula fundamental es una especie de cuerdas, que al igual que las cuerdas de una guitarra en donde una sola cuerda puede emitir varios sonidos diferentes, estas súper cuerdas emiten varios tipos de vibraciones, y con cada tipo de vibración aparece una partícula fundamental diferente. Así un electrón es en realidad una cuerda en forma de lazo y sin dimensiones, que se extiende en un universo de más de 4 dimensiones, que al vibrar de cierta manera haría que viéramos a un electrón, pero al oscilar de otra manera nos haría ver a un fotón o a un quark o a cualquier otra partícula fundamental.

284px-String_theory

1. Materia
2. Estructura molecular
3. Átomos
4. Electrones
5. Quarks
6. Cuerdas

Entre las objeciones que se le han hecho a esta teoría esta el que es incapaz de dar una descripción completa del mundo, (aún quedan cualidades físicas que no puede explicar), y el que no existe una forma de poder verificar experimentalmente lo que expone.  Sin embargo es una versión de esta teoría planteada por el profesor Maldacena, la que nos da la clave para resolver el enigma de la gravedad cuántica, al describir a la gravedad como una ilusión producto de un holograma cuántico.

Aunque es cierto que el conflicto entre la mecánica cuántica y la relatividad general no supone un problema constante para  la física, ya que  la mayoría de las veces los físicos,  o se centran a investigar el mundo de  las partículas, donde la gravedad casi no es importante,  o bien se dedican a estudiar el cosmos, donde los efectos cuánticos no entran en juego; existe un sitio donde el desacuerdo entre ambas teorías se hace tangible, los agujeros negros.

Los agujeros negros están formados por grandes cantidades de masa concentrada en una diminuta región del espacio, y como resultado de ello la fuerza gravitatoria que producen es tan fuerte que nada puede escapar a ella, ni siquiera la luz.  Si la Tierra se compactara sobre sí misma para formar un agujero negro, ¡se encogería hasta medir sólo 3 centímetros!.  Así las cosas, resulta imposible ignorar a la gravedad al estudiar los agujeros negros, y la extrema concentración de su materia hace que los efectos cuánticos deban ser tomados en cuenta también; por lo que para describir lo que sucede dentro de un agujero negro, los científicos necesitan una teoría unificadora, una teoría que con un solo juego de fórmulas matemáticas sirva para describir lo que sucede tanto a nivel cuántico como a  nivel cósmico.

Agujeros negros y hologramas

La particularidad de los agujeros negros, fue lo que hizo surgir la idea de lo que se conoce como principio holográfico.

Los agujeros negros están rodeados por un área enorme de dos dimensiones que aumenta en proporción a lo que caiga dentro de él y cuyo límite es denominado horizonte de sucesosEste horizonte representa un punto de no retorno, si usted cruzara esa frontera, aunque no perciba nada de inmediato, estaría condenado irremediablemente a caer dentro del agujero negro que hay en el centro.  La paradoja está en que a pesar de que los agujeros negros absorben todo lo que cruce su horizonte de sucesos, sean planetas o estrellas (existen agujeros negros súpermasivos, miles de millones de veces más grandes que nuestro Sol, y hay uno en el centro de nuestra galaxia y posiblemente dentro de cada galaxia…), desde afuera pueden ser descritos al determinar su masa, carga eléctrica y energía de rotación.

Para intentar entender  lo que sucede dentro de estos sistemas tan extremos, lo mejor será que seamos aventureros e imaginemos que nos adentramos en los confines de uno de estos pozos negros.   Nosotros estamos compuestos por una gran cantidad de información, color de cabello, estatura, rasgos físicos, millones y millones de células, de moléculas, millares y millares de formas en las que se combina nuestro ADN, e incluso nuestras ideas, todo lo que nos describe, todo esto sería absorbido por el agujero negro, junto con todo lo demás que pueda atrapar, y que una vez dentro es imposible que vuelva a salir. Todo esto nos hace suponer que un agujero negro es un sistema muy complejo que para ser descrito se necesitarían  cantidades casi infinitas de información, pero resulta que no es así, según la física clásica usted podría describir un agujero negro con sólo tres unidades de información: su masa, su carga eléctrica y su velocidad de rotación.  Así que una vez que estamos dentro de un agujero negro todo lo que somos se reduciría a  tres simples números.  ¡Caer en un agujero negro sí que  nos simplificaría la vida!   ; )

Pero es precisamente esta “simplicidad” lo que confundía a los físicos porque contradice una de sus leyes fundamentales, la segunda ley de la termodinámica.

La termodinámica es la disciplina que estudia como fluye la energía o el calor en un sistema, y según esta ley las cosas nunca se simplifican, siempre tienden a ir del orden al caos.  Y la entropía es la medida del “desorden” existente en un sistema.

Centrémonos un momento en la entropía.  Podemos definir a la entropía como la distribución de la energía o información en el espacio.  Como energía: porque recordando a Einstein y el principio de conservación, tenemos que la energía y la materia son dos manifestaciones de un mismo fenómeno, por ejemplo al quemar un trozo de leña este se transforma en cenizas, luz y calor que se dispersan en el ambiente, así tenemos que el trozo de leña no desaparece sólo se transforma.  La entropía también puede ser considerada como información: porque para describir un trozo de leña a se necesita conocer los elementos que lo componen como la celulosa, la configuración de las moléculas para formar esos elementos como la glucosa, etc. Y al quemar la leña toda esa información se conserva pero de forma dispersa en ambiente, en forma de dióxido de carbono, vapor de agua, etc.

Recapitulando, tenemos que la materia puede ser considerada como energía o como información, y la entropía viene a ser la medida de la distribución de la energía o información en el espacio, y que una vez que la energía se ha dispersado en el ambiente es prácticamente imposible volverla a concentrar en un solo punto. Piense en el calor y en cómo es prácticamente imposible recoger el calor producido al quemar el trozo de leña y volverlo a concentrar para formar el trozo de leña de donde salió. Por eso se dice que la entropía es algo que siempre va en aumento.

Como habrá notado, la entropía está en estrecha relación con el espacio, las moléculas que componen la materia se organizan en las tres dimensiones del espacio que ocupa el sistema (en este caso, trozo de leña), por lo que es proporcional a su volumen.

Todo esto supera la forma en como nuestro raciocinio dialéctico percibe el universo, pero matemáticamente tiene su lógica.  De momento tratemos de asimilar estos datos,  próximamente continuaremos desarrollando la idea del principio holográfico y los agujeros negros.  Mientras tanto les dejo con esta inquietud.  Puede que la realidad sea muy diferente de lo que creemos.  Continuará…